北京普天同创生物科技有限公司
标准物质网
在线客服
5.辉光放电光源
辉光放电(glow discharge, GD)可用作原子发射光谱的激发光源,它具有较高的稳定性,能直接用于固体样品的成分分析和逐层分析。
辉光放电有直流放电(DC)模式,可用于金属等导体分析,射频放电(RF)模式可用于所有固体样品(导体、半导体和绝缘体)的分析。
辉光放电光源,基本上都是格里姆(Grimm)型,其结构见图3-11。
此光源中,阳极空心圆筒伸入环形阴极中,它们之间为聚四氟乙烯绝缘体。两个电极间的距离和阳极圆筒下端面与阴极试样之间的距离皆为0.2 mm。光源内部抽真空至10Pa后,充入压力约100~1000Pa的低压放电气体氩,然后在两电极间施加500~1500V直流电压;阳极接地保持零电位,阴极施加负高压。使光源内氩气被激发、离解成Ar+和电子,在两电极间形成Ar+等离子体。在电场作用下Ar+与阴极样品碰撞,在样品表面的原子,获得可以克服晶格束缚的5~15eV的能量,并以中性原子逸出表面,其再与Ar+和自由电子产生一系列的碰撞,会被激发电离、产生二次电子发射,从而在负辉区产生样品特征的发射光谱。负辉区主要构成阴极的金属原子的溅射和光辐射,它产生最大的电流密度和电子动能,会使挥发出的气态原子强烈电离,并激发出光辐射(见图3-12)。
图3-11 格里姆辉光放电光源结构示意图
1-石英窗;2-阳极;3-环形阴极;4-绝缘体;5-放电气体(Ar)入口;6-放电气体出口;7-样品;8-负辉区
图3-12 格里姆放电光源放电负辉区放大图
辉光放电光源,除使用直流电压供电分析金属导体外,还可在两电极间施加具有一定频率的射频电压,此时样品可交替作为阴极或阳极,其表面轮流受到正离子和电子的碰撞,增大了样品原子被撞击的频率,提高了样品原子化和被激发离子化效率,它可直接分析导体、半导体和绝缘体样品。
辉光放电过程,样品原子被不断地逐层剥离,随溅射过程的进行,光谱信息反映的化学组成,由表面到里层所发生的变化,可用于深度分析。
相关链接:原子发射光谱仪(二)
通话对您免费,请放心接听
温馨提示:
1.手机直接输入,座机前请加区号 如18601949136,010-58103629
2.我们将根据您提供的电话号码,立即回电,请注意接听
3.因为您是被叫方,通话对您免费,请放心接听
登录后才可以评论